COS 499, SPRING 2011

Weather Application Development for the 105
Platform

William Lamond

Abstract—With such a large percent of the population
bearing smartphones, application developers who are seri-
ous about deploying their applications to as many people as
possible should earnestly consider mobile application devel-
opment. As one of the most popular smartphone platforms
in the world, iOS an excellent choice to reach a large audi-
ence.

Index Terms—iOS, Weather, Apple Developer Connec-
tion, TouchXML, Jailbreaking

I. INTRODUCTION

URING the spring semester of 2011 at the University

of Maine, I conducted an independent study regarding
mobile application development for the iOS platform. A
large portion of the consumer computing market already
involves smartphone technology, and the size of this group
is growing quickly. This trend highlights the importance of
mobile application development for software development
companies and educational organizations.

In order to meet consumer needs, application develop-
ers need to seriously consider mobile application develop-
ment when creating applications for every-day use. To stay
ahead of the competition, developers need intimate knowl-
edge regarding their platform of choice in order to make
functional, beautiful applications that are easy to use and
meet consumers’ needs.

My work involved developing a weather application,
called TouchWeather, in order to learn about mobile ap-
plication development and to develop the intimate knowl-
edge needed to create such applications on the iOS plat-
form. In order to complete my goals, I had to learn about
the i0S platform, Objective-C, XML formatted data pro-
vided by the National Oceanic and Atmospheric Admin-
istration (NOAA), Xcode and related development tools,
and a number of nuances and issues that need to be ad-
dressed when developing applications for iOS devices.

II. 10S

iOS is the operating system running on the iPhone, iPad
and iPod Touch devices. iOS is based on similar technolo-
gies found in Mac OS X. iOS is divided into layers, with
each layer providing a set of interfaces to application de-
velopers and/or higher layers. Apple recommends that ap-
plication developers investigate technologies provided by
higher layers before resorting to lower layers, since the ab-
stractions provided by the higher layers results in simpler
code with better readability. The higher levels provide the
same services the lower levels provide, but with simplified,

William Lamond is an undergraduate student in the Department
of Computer Science, University of Maine, Orono, ME 04473. Phone:
+1-207-974-9246, e-mail: lamond.will@gmail.com

object-oriented interfaces. The lower levels are still pro-
vided for developers that wish to use features not directly
accessible by the higher layers of iOS.

A. Cocoa Touch and UIKit

Cocoa Touch

Media

Core Services

Core 08

Fig. 1
10S LAYERS.

Cocoa Touch [1] provides high-level API’s for behaviors
and features users have come to expect from the iPhone.
The name of the game when it comes to iPhone applica-
tions is usability, look, feel, and an intuitive sense. Cocoa
Touch’s UIKit framework provides the key infrastructure
needed for creating event-driven, touch-based applications
that bring to the table what iPhone users want to see in
their applications.[2] Many applications use this layer for
the majority of the implementation, since the high-level
APIs provide the needed functionality with simpler inter-
faces (in comparison to the lower-level layers that do the
same thing, in a more technical way).

B. Lower Layers

The lower layers of i0S provide access to lower-level de-
tails and features, such as sockets and file system access.
These features are also included in the Cocoa Touch layer,
and all applications rely on these layers to implement fea-
tures found in higher layers. Lower levels do no impose
the same structures and patterns on developers, increasing
flexibility at the cost of increased complexity.

III. GETTING STARTED

We need to do some essential things to start developing
for i0S. To illustrate the basic development cycle for an
iOS application, we will refer to Touch Weather throughout
this report as a working example.

A. Join the Apple Developer Connection

Apple has an organization called the Apple Developer
Connection (ADC), which is central to all Apple devel-
opers. The ADC provides developer tools, the i0OS SDK,

documentation, sample code, developer forums, and more.
There are two membership options in the ADC:

o Basic Apple Developer Program membership ($0):
Provides documentation, tools, and the other features
listed above. This membership does NOT provide a
valid Apple developer key. The key is used to digitally
sign your applications to verify your membership in
the Apple developer program. You can still create the
application, but you can only test it on the iPhone
simulator (provided with the developer tools).

e Full Apple Developer Program membership
(899/year): Provides everything the free mem-
bership provides, and a valid key. The key allows
developers to test their applications on actual iOS
devices instead of just on the simulator, and to release
their applications to the App Store once they have
passed a thorough inspection by Apple.

B. Xcode and the i0OS SDK

Apple provides developer tools for Intel-based Macs run-
ning Mac OS X 10.6. Xcode is Apple’s collection of tools
that provide support for code editing, interface design, de-
bugging, performance tuning, project management, exe-
cutable building, and more. Installation is very straight-
forward: all you need to do is download and mount the disk
image, run the executable inside, and follow the prompts.
Once Xcode is installed, you can launch it and begin de-
velopment

C. Start a New Project

In Xcode, go to File=New Project and the New
Project window will appear. Select a View-based Appli-
cation to start making a simple application. Initially, the
view-based application template only provides one view for
displaying content, so to make more functional applications
one needs to modify the template.

IV. CREATING AN APPLICATION

Now that the developer tools are installed and we have a
project to work with, the first thing to do is start creating
content. Before we start, we should consider the organi-
zation of our content. Since an application with one view
can accomplish very little, it is advantageous to structure
your views in a hierarchy. An easy way to do this is to
use a UINavigationController (3] [4] to allow the user
to traverse the hierarchy in an intuitive way. First, you
must specify the content of your view to be pushed onto
the navigation controller stack. The easiest way to create
your content is to use the Interface Builder (IB) tool.

A. Create a New View Using Interface Builder

IB allows developers to build graphical user interfaces
(GUIs) by dragging and dropping components onto a view.
Create a new view-controller by going to File=New File
and selecting UIViewController [5] subclass, which we
will call RootViewController. By default, the checkbox
labeled “With XIB for user interface” is checked, and in or-
der to use IB we want to leave this as it is. This creates an

COS 499, SPRING 2011

implementation file (RootViewController.m), an interface
file (RootViewController.h) and an XIB file [6] (RootView-
Controller.xib). The XIB file is an XML file that describes
the layout of a view for the view-controller to generate.
This is an alternative to programmatically laying out the
view by specifying widget frame size and position on the
view in the implementation file. Files with the .xib exten-
tion are called nib files for historical reasons, so we will
refer to them as nib files.

V. ADDING YOUR CONTENT

To continue our working example, we will add a
text input field to the view we created earlier. To
do this, simply open RootViewController.xib, which was
created when we made the UIViewController subclass
RootViewController. Go to Tools=>Library and a win-
dow will open with a set of objects you can add to the
view. Find the UITextField [7] in the library, and drag
one onto the view. You can resize and move it on the
view by moving the handles and dragging it, or change
the values in the inspector. To access the inspector, go to
Tools=Inspector and a window will open up.

Once the text field is in place, we have to add it in the
code. Open the interface file, RootViewController.h, and
add the following code.

@Qinterface RootViewController : UlIViewController

//add this line:
UlTextField xinput;

}

//and these lines:
@property (nonatomic, retain)
IBOutlet UlTextField *input;

The interface declares the instance variable input as a
pointer to a UITextField object and makes a property
declaration.

A. Property Declaration and Accessor Methods

Properties are declared with the @property declaration.
[8] Properties specify accessor methods for instance vari-
ables with given attributes, instead of of making accessors
by hand to get and set the value of an instance variable.
In the above example, nonatomic and retain are the ac-
cess attributes. Atomic access is described in subsection
N, and retain messages are described in the retain section
of section M. IBOutlet states that input is an Interface
Builder outlet, and is described in section Q. Combine with
an @synthesize directive in the implementation file, prop-
erties automatically generate accessors to the instance vari-
able with described implementation attributes. The basic
structure of an implementation file (such as RootViewCon-
troller.m) is:

@implementation RootViewController
@synthesize input;
//implement methods here...

@end

WEATHER APPLICATION DEVELOPMENT FOR THE I0S PLATFORM 3

B. Atomic Access

The nonatomic property states that access is not
done atomically, or in one non-interruptible function. This
means that access between threads is not safe, since one
thread can modify the contents of the instance variable
while another thread is accessing the contents. By de-
fault, properties specify atomic access. In an application
without multiple threads accessing specific data however,
nonatomic access is faster since these data do not need to
be checked for consistency during calls to accessor meth-
ods.

VI. MEMORY MANAGEMENT

iOS applications manage memory using a “reference-
count” system of object ownership. [Eﬂ Objects have a
retain count, which is used to count the number of own-
ers, or referrers, to the object. Object ownership follows
these fundamental policies:
e You own an object allocated using alloc, new, copy,
or mutableCopy.
e You own an object when you send it a retain message.
e You must relinquish ownership of an object when you
are done with it by sending it a release message.
Alternative, you can add the object to an autorelease
pool to have it released at some point in the future.
e You must not release an object you do not own.

A. Retain

The retain property states that the setter method sends
the object a retain message. A retain message is used
designate object ownership by incrementing the object’s
retain count. When an object sends another object a re-
tain message it is claiming (at least partial) ownership of
the object. There are a few ways to gain ownership of an
object, and multiple objects can all have partial ownership
of one object. Any time you allocate a new object using
methods such as alloc, new, copy or mutableCopy, you
claim ownership through an implicit retain call. You can
also explicitly retain an object if you are claiming own-
ership to something that already exists so that it is not
deallocated before you are finished with it.

B. Release

When an instance variable is set using an accessor syn-
thesized from a property, it sends a release message to
the old value. The release message decrements the ob-
ject’s retain count. Once you are done with an object,
you must send it a release message. When the retain
count reaches 0, the object is removed from memory, or
deallocated, and its dealloc method is called. Inside of
the dealloc method, an object should release whatever
instance variables it is keeping. You must send release
messages to objects you own when you are finished with
them. Failure to do so causes a memory leak. Releasing an
object you do not own can cause it be deallocated before
its owners are finished, causing the application to crash.
The rule of thumb is to release an objects you allocate or

ones you assign to an object’s instance variable using an
accessor with the retain property.

C. Autorelease Pools

Autorelease pools are used to hold objects that
are to be sent release messages when the pool is
“drained.” To use an Autorelease pool, allocate an
NSAutoreleasePool object and initialize it. To put an
object in the pool, send it an autorelease message. Ob-
jects that receive the autorelease message are sent a re-
tain message when the autorelease pool receives a drain
message.

Autorelease pools are most useful when you need to re-
lease an object but you are also returning it from a method.
If you simply release the object, it will be deallocated and
thus invalid when you try to return it. If you do not release
it, it will result in a memory leak. To avoid this, the object
can be added to a pool in the calling code, returned, and
the pool can be drained later when the object has been re-
tained by the caller. This allows you to conform to memory
management policies while allocating objects in methods
that are going to be returned eventually.

VII. LINKING IBOUTLETS TO OBJECTS LAID OUT
WiTH 1B

Action Breakpoints Build and Run Tasks Info

File Name
1[4 RootViewController.xib

View -

RootViewController.xi

0

Inspectar

File's Owner
(3PS ¥ Outlers
input % Round Style Text Field
searchDisplayCantraller
X View

g Round Style Text Field

13 ® Round Style Text Field

30| | @ WeatherApp.xcodeproj

Fig. 2
LINKING OBJECTS IN THE NIB TO OBJECTS IN CODE.

The next step is to connect the text field in the interface
to the text field in the code. This is done using IB to spec-
ify object owners for interaction protocols. In IB, right
click on the RootViewController’s Files Owner, which
will open an outlet inspector. In the outlet inspector, you
will see the UITextField input’s outlet, as specified by
the property declaration, that we created before. Click
and drag from the circle on the right side of the name
to the text field on the view itself, as shown in Figure 2.

This links the outlet in the interface file (RootViewCon-
troller.h) to the UITextField in the nib file. Any changes
made to one will affect the other. Now when text is en-
tered into the field it can be accessed through input in the
RootViewController.

VIII. APPLICATION STRUCTURE

The application starts like any C-like application: in the
main method. This method creates an autorelease pool and
calls the implicitly defined UIApplicationMain function.
#import <UIKit/UIKit.h>

int main(int argc, char xargv([]) {

NSAutoreleasePool % pool =
alloc] init];

int retVal = UlIApplicationMain (argc,
nil);

[pool release];

return retVal;

[[NSAutoreleasePool

argv, nil,

All the action is happening in UIApplicationMain.
This method instantiates and sets the delegate
(TouchWeatherAppDelegate), as well as starts the main
application loop. The TouchWeatherAppDelegate object
is the top-level delegate object. It receives notifications
from the main application loop (in UIApplicationMain),
such as when the application finishes launching or a user
touches the screen, so that custom behavior can be imple-
mented in the methods called by the loop. One method
called is didFinishLaunching WithOptions. This method
is used for top-level behavior specification, such as view
organization and adding views to the window. In our case,
we are interested in using a UINavigationController
with our custom view controller, RootViewController.
To achieve our hierarchy, we allocate the two con-
trollers and push the RootViewController onto the
UINavigationController’s view stack.

— (BOOL) application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary
*)launchOptions

{
//make the root view
topView = [[RootViewController alloc] init];
//push onto nav controller
nav = [[UINavigationController alloc]
initWithRootViewController:topView];
//add the nav controller as a subview
[window addSubview: [nav view]];
[window makeKeyAndVisible];
return YES;
}

In the init method of the RootViewController, you
can specify the text at the top of the navigation controller.
I made mine say, TouchWeather by adding the following
line to init

self . title = @"TouchWeather”;

Every view pushed onto the navigation stack has ac-
cess to the navigation controller. The navigation controller
makes its title whatever the top view controller sets its ti-
tle to. The view controller at the top of the stack can

COS 499, SPRING 2011

also push another view onto the stack, which we will see
shortly.

A. Model-View-Controller Paradigm

By creating a new UIViewController subclass and
associated nib file, we have made our first application
component that follows the model-view-controller (MVC)
paradigm. [3] All iOS applications should follow the MVC
paradigm, which results directly from using the high-level
APIs of the Cocoa Touch layer and templates provided by
Xcode. The MVC paradigm forces the separation of data
(the model) and the view (UTI), with the controller acting
as a delegate between the two. This separation of concerns
is very natural for anyone with object-oriented design ex-
perience. Xcode provides application developers with tem-
plates that provide method prototypes to implement the
protocols needed to manage the view.

The model is responsible for handling the data, includ-
ing the logic for accessing or changing the data. The views
responsibility is to display the data to the screen, by using
labels, images, scrolling text or web views, etc. The view
can be designed in IB (as described before), or program-
matically. In between these two components is the con-
troller, which is responsible for working with model data,
transitioning between portions of the logic, modifying the
view, and handling events such as touches and gestures.

It is useful to think of this paradigm as an artist with
a palette and canvas. The artist takes material from the
palette and puts it on the canvas in the desired way. This
metaphor is identical to the MVC paradigm: the data is
the palette, the controller is the artist, and the view is the
canvas.

When a view controller is in control it acts at the top-
level delegate object, or it can nominate another object to
take its place. This lets the controller receive signals from
the main application loop so it can detect events such as
device rotation, scrolling or pinching gestures, while mak-
ing necessary changes to the view or data model.

Two important aspects of view control regarding mem-
ory management, loading and unloading from a nib, are
discussed in later sections.

IX. DISPLAYING THE DATA

In TouchWeather, XML data is downloaded from the
NOAA and parsed into a WeatherData object (the model
part of the MVC paradigm). A UITableViewController
[11] is created to display each time periods informa-
tion. The TableViewController is then pushed onto
the UINavigationController’s view stack in the same
way the RootViewController was. RootViewController
has a method textFieldShouldReturn that specifies
the behavior of the view after the return button is
touched in the text field. In our case, we want to ini-
tialize the WeatherData object using a zip code given
by the user, create and initialize TableViewController
with the data, and push the new controller onto the
UINavigationController’s view stack:

WEATHER APPLICATION DEVELOPMENT FOR THE I0S PLATFORM 5

— (BOOL) textFieldShouldReturn:(UlTextField =)
theTextField
{

if (theTextField == input) {
[input resignFirstResponder |;

WeatherTableViewController xwtve =
[self updateZipCode];

[self.navigationController
pushViewController:wtvce
animated : YES];

[wtve release];

}

return YES;

This code causes the input’s keyboard to leave the
screen with the resignFirstResponder message, then initial-
izes a WeatherTableViewController with the updateZip-
Code method. This method implementation looks about
like the following code listing.

— (WeatherTableViewController) updateZipCode

//error code checking omitted for brevity ...

WeatherData xweather =
initWithZipCode:string |;

[[WeatherData alloc]

WeatherTableViewController xwtve =
[[WeatherTableViewController alloc]
initWithWeather: weather];

[weather release|;
return wtvc;

The method allocates and initializes a WeatherData
object, weather, wusing the =zip code string in-
stance variable. It then allocates and initializes the
WeatherTableViewController using weather, sends a
release message to weather, and returns the controller.

With the controller allocated and initialized, all that is
left is to push it onto the UINavigationController’s stack
and send it a release message. At this point, the table
view controller slides into view and populates itself. It
makes more sense to explain the UITableViewController
subclass, how it populates itself, and how it expects to
access data before describing the model generated from
the XML data.

A. WeatherTable ViewController

TouchWeather uses a custom UITableViewController
subclass called WeatherTableViewController. The inter-
face file WeatherTableViewController.h looks like:

@Qinterface WeatherTableViewController
UlTableViewController {

WeatherData xdata; //data model

—~

— (id)initWithWeather: (WeatherData x*)incomingData;
— (void)dealloc;

@property (nonatomic, retain) WeatherData xdata;

@end

To make the UITableViewController subclass, go to
File=—New File and select a UIViewController subclass.

Make sure the UITableViewController subclass check
box is selected, and follow the prompts to finish making
the view controller.

Xcode provides a template, as usual. The tem-
plate has method prototypes to manage table view
cells (a small view designed to be one entry in a

table), and implement the UITableViewDataSource
protocol. [12] The controller needs to provide three
methods to implement the UITableViewDataSource
protocol: numberQOfSectionsInTableView,

number0OfRowsInSection and cellForRowAtIndexPath.

The numberOfSectionsInTableView method re-
turns the number of cell sections in the table, the
numberOfRowsInSection method returns the num-
ber of rows in a given section of the table, and

cellForRowAtIndexPath returns a table cell for the
table at a given index, which corresponds to the row of
the cell.

The only method worth discussing in detail is
cellForRowAtIndexPath. The controller has two in-
stance variables that come into play here: tableView
and indexPath. |[13] The tableView variable is like
the canvas: it provides slots for the cells to reside in.
These slots are filled by the controller’s implicit calls to
cellForRowAtIndexPath, which include tableView and
indexPath as method parameters:

— (UITableViewCell x)

tableView :(UlTableView x)tableView
cellForRowAtIndexPath:(NSIndexPath x)indexPath

{

NSString %CelllD = [[NSString alloc]
initWithFormat :Q” WeatherCell %d” ,
[indexPath indexAtPosition:1]];

//try to find existing cell
UlTableViewCell xcell = [tableView
dequeueReusableCellWithIdentifier: CellID];

if (cell == nil) {
cell = [[[UlITableViewCell alloc]
initWithStyle: UITableViewCellStyleSubtitle
reuseldentifier: CelllD] autorelease];

}

//set content here...

return cell;

The method uses the indexPath argument to determine
the row by sending the indexAtPosition message with the
argument of 1. With the row number found, the method
can make a unique cell identification, called the CellID.
The controller sends the tableView a dequeueReusable-
CellWithldentifier message with the CelllD as the argu-
ment. This message potentially returns a cell that has been
marked for reuse, thus reducing cell allocation overhead. If
the cell returned is null, the controller allocates and initial-
izes the cell with a style and a reuse identifier, and marks
the cell to be autoreleased. At this point, the controller,
which also holds the data model in Touch Weather, can use
the indexPath argument to set the content of the cell. By
using each row’s unique row identifier, each call that re-
turns a cell can return a cell populated with specific data.

After the WeatherTableViewController is initialized
and each cell is configured, the view is complete and can
be displayed to the user.

Saturday Night
Partly Cloudy - low: 33

Sunday Night
Mostly Clear - low: 34

r’ Monday”‘ ‘

Sunny - h

i Monday Night
Chance Showers - low: 40
50%

B

Fig. 3
TABLE WITH UINAVIGATIONCONTROLLER

At the top of the window is the navigation bar that is
provided by the navigation controller. This has the label,
which I have used for the city name and state in this view
of my application, and a button that takes us back to the
first view. The practical navigation provided by the few
lines it takes to add the navigation controller was one of
the simplest and most useful things I found while making
this application.

X. NOAA’s XML Data

TouchWeather gathers weather data from the National
Oceanic and Atmospheric Association’s (NOAA) XML
feed. To build my data model, I used a library called
TouchXML [14] to download XML data, which was parsed
and organized in an array full of NSMutableDictionary
objects. [15]

A. TouchXML

TouchXML is a libxml2 wrapper written in Objective-C.
It is an easy-to-use DOM parser with XPath support that
has good parsing speed, but with a rather bloated memory
footprint. [16] It does not come with the SDK by default so
in order to use it we have to get it. Make a directory called
ExtraLibraries in the Developer directory. Download the
TouchXML code at https : //github . com/TouchCode /
TouchXML / tree / master / Source| and save it in the Fz-
traLibraries directory.

Once the source code is downloaded, we need to con-
figure the project by telling Xcode where to find libxml2,
and adding the TouchXLM classes to the project. With
the project open in Xcode:

1. Go to Project=-Edit Project Settings

2. Click the build tab.

COS 499, SPRING 2011

3. Search for “Header Search Paths,” and add /usr/in-
clude/libxml2

4. Search for “Other Linker Flags” and add -lxml2

5. Add the classes to the project by right clicking
the Classes folder in the project window and go to
Add=Existing Files... Navigate to the directory
and highlight all of the source files, and click Add.

6. Add the line:

#import ¢ ‘TouchXML.h’’

to the header of the class the XML is being parsed in.

B. WeatherData

The data had to be organized in such a way to facilitate
the WeatherTableViewController’s data access pattern,
which as described before is based on the cell’s row iden-
tifier. This naturally lends itself to an array, especially
considering the rather small amount of data being down-
loaded. T chose to use an NSMutableArray [17] to store
anywhere from 10 to 16 time periods of 12 hours each. I
created an NSMutableDictionary [15] to store the data
at each index of the array for each time period, and used
unique string identifiers to access each of the data in the
dictionary.

This array of dictionaries worked well. Each dic-
tionary could be retrieved for the respective cell with
ease by using the NSIndextPath object in the cell cre-
ation function of the WeatherTableViewController.
The dictionary could also be passed to the next
stage, the TwoScrollViewController and the
DetailViewController.

In order to traverse to the next level of the view hier-
archy, we need to decide what time period is selected by
the user. Luckily, the UITableViewController subclass
template provides us with a method to do such a thing.

— (void)tableView:(UlTableView x*)tableView
didSelectRowAtIndexPath :(NSIndexPath x)indexPath

{

//init the controller using the nib

TwoViewController xtwoViews =

[[TwoViewController alloc]

initWithNibName :@Q” TwoViewController” bundle:
nil |;

//give the controller the correct dictionary
[twoViews setWeatherData:[self.data
getDictionary : [indexPath
indexAtPosition:1]]];

// push the new controller onto the stack
[self.navigationController
pushViewController:twoViews animated:YES];

[twoViews release];

This method takes the same NSIndexPath argument,
and thus can be used to access the appropriate data
based on table row. Once the new controller is pushed
onto the navigation controller’s stack, the new controller’s
viewDidLoad method is called. This method has not been
needed thus far. The RootViewController’s view was
rather simple, and did not have any dynamic loading to be
done and the WeatherTableViewController’s view was

https://github.com/TouchCode/TouchXML/tree/master/Source
https://github.com/TouchCode/TouchXML/tree/master/Source

WEATHER APPLICATION DEVELOPMENT FOR THE I0S PLATFORM 7

created programmatically row by row. The viewDidLoad
method is called when a view loads for the first time, and
is used for dynamic customization. In our case, we want
to use it to add content to each of the two views in the
TwoViewController.

XI. ScroLL VIEWS

Because of the nature of our content, we will need to
find a way to display data to the user that does not fit on
the screen. A great way to do this is with a UIScrollView.
[18] UIScrollViews are a useful way to display data to the
user that does not fit on the screen and does not lend itself
well to a UITableViewController, such as a large image
or block of text.

TouchWeather uses a custom view controller
subclass that contains two UIScrollViews called
TwoScrollViewController. This view controller is
loaded from a nib, and contains two scroll view laid out
in Interface Builder, and as such, must be “wired” prop-
erly as described before with the RootViewController
example.

With the two UIScrollViews laid out on the
TwoScrollViewController’s view in IB and the code
in the interface file, we can configure the con-
tent. We want the TwoViewController to initialize a
DetailViewController to add as a subview to the top
UIScrollView, and to tile three images downloaded from
NOAA to add as a subview to the bottom UIScrollView.

The DetailViewController displays data in the dic-
tionary using outlets configured in code that are linked to
objects added to the view’s nib file using Interface Builder.
Simply create the nib file with the UIViewController sub-
class, lay out the objects needed to display the content, and
link them to the IBOutlets declared in the interface file.
After allocating the DetailViewController and initializ-
ing it with the data to be displayed, you need to tell the
scroll view how large the content to be displayed is:

svl.contentSize = details.view.frame.size;

After that, add the DetailViewController to
the UIScrollView as a subview and release the
DetailViewController you allocated.

[svl addSubview:details |;
[details release];

A. Tiling Content For Scroll Views

The bottom scroll view is more interesting. We want
to tile three images downloaded from the NOAA that dis-
play hourly weather data for the given time period. To
do this, the TwoViewController needs to specify the size
of the tiled data in the UIScrollView by making a call
to CGRectMake. [3] This function returns a CGRect object
which can be used to specify a frame’s size and position
in a UIScrollView or any other view. In our case, we
want to create a frame that encapsulates the three images
tiled together. Before we can do that, we need to create
the a frame for each of the images based on each other

so they show up in the correct places once added to the
UIScrollView.

//allocate the images

uivl = [[UllmageView alloc] initWithImage:
[data valueForKey:@” hourlytemp”]];

uiv2 = [[UllmageView alloc] initWithImage:
[data valueForKey:@” hourlywind ”]];

uiv3d = [[UllmageView alloc] initWithImage:
[data valueForKey:@” hourlyprecip ”]];

//set the image frames

uivl.frame = CGRectMake (0.0,
0.0,
uivl.
uivl.

size .width,
size.height);

frame .
frame .

frame
frame .
frame .
frame .

uiv2.
uivl.
uiv2.
uiv2.

= CGRectMake (0.0,
size . height ,

size .width,
size.height);

uiv3.frame = CGRectMake (0.0,
uivl.frame.size.height + uiv2.frame.size.height,
uiv3.frame.size.width,

uiv3.frame.size.height);

The parameters to CGRectMake in each call are topLeft-
XCoord, topLeftYCoord, bottomRightXCoord, and bot-
tomLeftYCoord, respectively. The result is the first
UllmageView starting at the very top left of the
UIScrollView’s content view, the second UIImageView
starting directly below the first, and the third directly be-
low the second. After adding the line

scrollView2 .pagingEnabled = YES;

scrollView2 will snap to fit the content of each image
as long as the size of the view in the controller’s nib is the
correct size. This will give the hourly weather graphs a
clean feel by making it easy to view one graph at a time.
The last couple things that need to be done are setting
the overall content size of the bottom UIScrollView, and
adding the UIImageViews as subviews.

//make this the size of all image frames
CGRect allHourlys = CGRectMake (0.0,
0.0,

uivl.frame.size.width,
uiv3.frame.origin.y + uiv3.frame.size.height);

scrollView2 .contentSize = allHourlys.size;

[scrollView2 addSubview:uivl];
[scrollView2 addSubview:uiv2];
[scrollView2 addSubview:uiv3];

Once the UIScrollView’s content sizes are specified, the
content views’ frames are constructed, and the content is
added to the UIScrollViews as subviews, the desired view
is complete.

B. Memory Management: viewDidUnload

When a view’s content is set with the viewDidLoad
method, the best way to release any instance variables
that were allocated is to implement the viewDidUnload
method. The method prototype is already included in the
template for a UIViewController subclass, so simply un-
comment it and fill it in with release messages to the ob-
ject’s instance variables. When the view is unloaded from
the screen (such as when the back button is hit on the
UINavigationController, this method is called and the

[carrier = 5:18 AM =

Orono ME

Today

-
F 30%

High: 62°F lprecip: 30%

Scattered Showers

Scattered showers, mainly before 9am.
Mostly cloudy, with a high near 62,
Southwest wind between & and 14 mph.
Chance of precipitation is 30%.

Wind Chill *F) |Temperature [F)

Fig. 4
UISCROLLVIEWS WITH CONTENT.

necessary objects are released as per the object ownership
policy.

XII. BUILDING THE APPLICATION

There are a few options when it comes time to build and
test your application. The easiest way is to select the de-
sired build SDK (device or simulator), and Build button in
Xcode. Building from the command line is also easy: sim-
ply change to the directory containing the project’s .xcode-
proj file and type:

$ xcodebuild —target Project_-Name

XIII. INSTALLING AND RUNNING ON THE IPHONE
SIMULATOR

To simulate your application, set the Base SDK value
to i0S Simulator 4.1 (or the most current version if that
is what you are testing against). Once this is set, click
the Build and Run button at the top of the Xcode project
window. This will build and install the application on the
simulator. The iPhone Simulator gives you a very good
idea of what your application will look and feel like. The
problem with relying on the simulator is that the iPhone
has more limited hardware than a Mac. To really get the
feel of your application in a real user setting, you must
install the application on an iOS device to test it.

XIV. INSTALLING ON AN IOS DEVICE

Once the application is built, there are a couple of ways
it can be installed on a device. If you possess an Ap-
ple developer key, the easiest way is to use Xcode. Go
to Project="Project Settings. Change the base SDK to
i0S Device 4.1 (or whatever iOS version you are devel-
oping for), and set the Code Signing Identity to your
developer key. With the device connected to the computer,
click Build and Go at the top of the Xcode project window.
The application can also be installed from the command

COS 499, SPRING 2011

line by changing to the directory containing the project’s
.xcodeproj file and typing:
$ xcodebuild install —target Project_-Name

to install the application on the connected device. Both
of these methods of installing on the device require a valid
key to sign the application. If you are short on cash, you
can still install your application by jailbreaking your de-
vice.

XV. INSTALLING AN APPLICATION ON A JAILBROKEN
10S DEVICE

In order to install an application on a device without
having a valid Apple developer key, you must jailbreak your
device. Once the device is jailbroken, utility applications
can be installed to transfer your application to the device.
The first step is, of course, to jailbreak the device.

A. Jailbreaking Your Device

Jailbreaking is the process of gaining access to the root
account on the i0OS device. An easy and free way to do
this is to use a program called GreenpoisOn. By following
the instructions in the README file provided with Green-
poisOn, you can have the open application store Cydia in-
stalled on your iOS device and begin the rooting process.
Once Cydia is installed, it will ask you how you will be us-
ing it (you should say developer), and it will prompt you
to update (you should do a full update). Once the up-
dates are complete, we need to add ijailbreak.com’s source
repository to get an application called Mobile Terminal in-
stalled. This application is also available in the Featured
section of Cydia, but as of the time this paper was written
MobileTerminal from the “stock” Cydia repositories does
not work on iOS 4.2.1.

1. Launch Cydia.

2. Touch Manage at the bottom.

3. Touch Sources in the middle.

4. Touch “Edit” at the top right on the navigation bar.

5. Touch “Add” at the top left on the navigation bar.

6. Type: “http://www.ijailbreak.com/repository” and
touch “Add.”

7. Once the repository is added, you can touch the iJail-
Break entry in the Manage tab and install MobileTer-
minal from there.

Once MobileTerminal is installed, we want to change

the root password. Open MobileTerminal and switch to
the root user:

$ su root

The default root password is alpine. Enter that, and
then change the root password:
$ passwd

MobileTerminal will prompt you for a new password
twice. Type “exit” once you are finished to leave root.

B. Installing an Application on a Rooted Device

Once the root password is changed, we can safely in-
stall OpenSSH. Launch Cydia, and go to the Featured sec-
tion. Scroll down to the section labeled “Console Utilities

WEATHER APPLICATION DEVELOPMENT FOR THE I0S PLATFORM 9

& Daemons” and install OpenSSH from there by following
the instructions presented.

With OpenSSH installed, you can now use SSH with
your device, which we can used to transfer the application
to the device by using SCP (or SFTP if you prefer).

Even though the device is rooted, we need to solve the
problem of signing the application. Sign the application
with a certificate created by KeychainAccess. [19] To cre-
ate a certificate:

1. Launch Keychain Access in Applications/Utilities

2. In Keychain Access, go to Keychain
Access=—>Certificate Assistant=—Create a Cer-
tificate

3. For the name, enter Xcode Signature, and select Code
Signing as the certificate type. Make sure the “Let me
override defaults” box is checked, and click continue.

4. Enter a serial number. The number can be anything,
as long as each certificate has a unique name and serial
number. The default validity period is a year, but you
can make it longer or shorter. Once the certificate
expires you can no longer sign applications with it, but
the applications built and installed using the expired
certificate will still work on the device.

5. Enter some personal information.

The rest of the options work well by default, so click

continue until the certificate is finished.

Next, we need to edit the info.plist in /Developer/Plat-
forms/iPhoneOS.platform. Make a backup copy, and open
info.plist in TextEdit, or an editor of your choice. Re-
place all instances of XCiPhoneOSCodeSignContext
with XCCodeSignContext using the find-and-replace
tool (there are many instances, so find-and-replace saves
a lot of time). Save your changes.

With the info.plist file edited and the signature made,
the next step is to configure and build in Xcode. With
the project open, go to Project==-Edit Project Settings
and set the Code Signing Identity to Xcode Signa-
ture. One the project is configured, go to Build=-Build.
Accept the certificate, and ignore the warning about an
invalid code signature since jailbreaking the device allows
applications to be signed by something other than a valid
key from the ADC.

To transfer the application to the device, open a ter-
minal and change to the directory containing the project’s
.xcodeproj file where a build directory will appear once the
project is built. Go to build=Release-iphoneos. In-
side will be a directory called Project_Name.app. Type
into the terminal:
$ scp —r Project_Name.app root@192.168.0.101:/

Applications/
with your device’s IP address in place of the one given.
Type your password, and once the transfer is complete
restart the device. The application will appear on the
Springboard (the iPhone’s desktop).

XVI. FINAL THOUGHTS

I enjoyed the challenges presented to me while develop-
ing TouchWeather. There was a bit of a learning curve

in regards to Objective-C, but once that was overcome
I could focus on the application’s features and learning
more about i0S development in general. I look forward to
furthering my experience with mobile application develop-
ment, not only with iOS but other platforms as well. By
following these mobile computing trends, developers are
not only targeting one of the largest consumer computing
markets in the world, but are also targeting a big part
of computing’s future overall. If one trend has definitely
been followed since the invention of the integrated circuit,
it is that computers have gotten small, faster, and more
user-friendly. This is continuing with the introduction of
smart phones with multi-core processors, dedicated graph-
ics chips, and constant connection to the internet through
mobile network technologies. As these technologies con-
tinue to develop and become accepted on an even wider
scale, designing and implementing applications that users
want to use every day is going to become and even greater,
more exciting challenge.

XVII. RESOURCES

1. National Oceanic and Atmospheric Administration:
http : / / www . weather . gov/

2. GreenpoisOn:
http : // greenpoisOn . com/

3. iJailBreak:
http : //ijailbreak . com

REFERENCES

[1] Apple Inc.,
/ / developer .
Miscellaneous

“Cocoa Touch Layer,” November 2010, https :
apple . com / library / ios / #documentation /
/ Conceptual / iPhoneOSTechOverview /'

iPhoneOSTechnologies / iPhoneOSTechnologies . html # / /
apple _ref /doc /uid/ TP40007898-CH3-SW1.

[2] Apple Inc., “UIKit Framework Reference,” November
2010, https : / / developer . apple . com/ library / ios /

#documentation/UIKit/Reference/UIKit_Framework/_index.
html #/ / apple _ref /doc /uid / TP40006955.

[3] Jonathan Zdziarski, The iPhone SDK, O’Reilly, 2009.

[4] Apple Inc., “UINavigationController Class Reference,” May
20009, http : / / developer . apple . com / library / ios /
#documentation/uikit/reference/UINavigationController _
Class /Reference /Reference . html.

[5] Apple Inc., “UlViewController Class Reference,” January
2011, http : / / developer . apple . com / library / ios /.
#documentation/uikit/reference/UIViewController_Class/
Reference /Reference . html.

[6] Fraser Speirs, “What are XIB Files?,” December 2007, fhttp :
//speirs . org/blog/2007/12/5/what-are-xib-files. html.

[7] Apple Inc., “UlTextField Class Reference,” April
2010, http : / / developer . apple . com / library / ios /.
#documentation / uikit / reference / UITextField _ Class /
Reference /UITextField . html.

[8] Apple Inc., “Declared Properties,” December 2010, http : //
developer . apple . com/library/mac/#documentation/Cocoa/
Conceptual / ObjectiveC / Chapters / ocProperties . html #//
apple _ref /doc/uid/TP30001163-CH17.

[9] Apple Inc., “Practical Memory Management,” December
2010, http : / / developer . apple . com / library / mac /
#documentation / Cocoa / Conceptual / MemoryMgmt / Articles /
mmPractical . html#//apple _ref /doc/uid/TP40004447-SW1.

[10] Apple Inc., “Autorelease Pools,” December 2010, http : //
developer . apple . com/library/mac/#documentation/Cocoa/
Conceptual / MemoryMgmt / Articles / mmAutoreleasePools .
html #/ / apple _ref /doc/uid/20000047-CJBFBEDI.

[11] Apple Inc., “UlTableViewController Class Reference,” Febru-
ary 2010, http : // developer . apple . com/ library / ios /

http://www.weather.gov/
http://greenpois0n.com/
http://ijailbreak.com
https://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSTechnologies/iPhoneOSTechnologies.html#//apple_ref/doc/uid/TP40007898-CH3-SW1
https://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSTechnologies/iPhoneOSTechnologies.html#//apple_ref/doc/uid/TP40007898-CH3-SW1
https://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSTechnologies/iPhoneOSTechnologies.html#//apple_ref/doc/uid/TP40007898-CH3-SW1
https://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSTechnologies/iPhoneOSTechnologies.html#//apple_ref/doc/uid/TP40007898-CH3-SW1
https://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSTechnologies/iPhoneOSTechnologies.html#//apple_ref/doc/uid/TP40007898-CH3-SW1
https://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIKit_Framework/_index.html#//apple_ref/doc/uid/TP40006955
https://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIKit_Framework/_index.html#//apple_ref/doc/uid/TP40006955
https://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIKit_Framework/_index.html#//apple_ref/doc/uid/TP40006955
http://developer.apple.com/library/ios/#documentation/uikit/reference/UINavigationController_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UINavigationController_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UINavigationController_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UIViewController_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UIViewController_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UIViewController_Class/Reference/Reference.html
http://speirs.org/blog/2007/12/5/what-are-xib-files.html
http://speirs.org/blog/2007/12/5/what-are-xib-files.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITextField_Class/Reference/UITextField.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITextField_Class/Reference/UITextField.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITextField_Class/Reference/UITextField.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProperties.html#//apple_ref/doc/uid/TP30001163-CH17
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProperties.html#//apple_ref/doc/uid/TP30001163-CH17
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProperties.html#//apple_ref/doc/uid/TP30001163-CH17
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProperties.html#//apple_ref/doc/uid/TP30001163-CH17
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmPractical.html#//apple_ref/doc/uid/TP40004447-SW1
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmPractical.html#//apple_ref/doc/uid/TP40004447-SW1
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmPractical.html#//apple_ref/doc/uid/TP40004447-SW1
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmAutoreleasePools.html#//apple_ref/doc/uid/20000047-CJBFBEDI
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmAutoreleasePools.html#//apple_ref/doc/uid/20000047-CJBFBEDI
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmAutoreleasePools.html#//apple_ref/doc/uid/20000047-CJBFBEDI
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmAutoreleasePools.html#//apple_ref/doc/uid/20000047-CJBFBEDI
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITableViewController_Class/Reference/Reference.html

10

(12]

(13]

14]

(15]

(16]

(17]

(18]

(19]

#documentation /uikit / reference /UITableViewController _
Class /Reference /Reference . html.

Apple Inc., “UlTableViewDataSource Protocol Reference,”
May 2010, http : // developer . apple . com/ library / ios /
#documentation /uikit / reference /UITableViewDataSource _
Protocol /Reference /Reference . htmll

Apple Inc., “NSIndexPath Class Reference,” March 2011, http :
/ / developer . apple . com / library / mac / #documentation /
Cocoa/Reference/Foundation/Classes/NSIndexPath_Class/
Reference /Reference . htmll

Matt Tuzzolo, “Adding Local Weather Conditions to Your
App,” Sept. 2010, http : // tinyurl . com/ 6ho62t6.

Apple Inc., “NSMutableDictionary Class Reference,” Au-
gust 2010, http : //developer . apple . com/ library / mac /
#documentation / Cocoa / Reference / Foundation / Classes /
NSMutableDictionary _Class /Reference /Reference . htmll
Ray Wenderlich, “How To Choose The Best XML Parser For
Your iPhone Project,” March 2010, http : // tinyurl . com/
y98kz9s.

Apple Inc., “NSMutableArray Class Reference,” August
2010, http : / / developer . apple . com / library / mac /
#documentation / Cocoa / Reference / Foundation / Classes /
NSMutableArray _ Class / Reference /Reference . html.

Apple Inc., “UlScrollView Class Reference,” November
2010, http : / / developer . apple . com / library / ios /
#documentation / uikit / reference / UIScrollView _ Class /
Reference /UIScrollView . html.

kaamaru, “How to Fake Code Sign Applications in Xcode 3.2.3,”
August 2010, http : // ihackmyi . com/ forum / index . php 7
topic=24020. 0.

COS 499, SPRING 2011

http://developer.apple.com/library/ios/#documentation/uikit/reference/UITableViewController_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITableViewController_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITableViewDataSource_Protocol/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITableViewDataSource_Protocol/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UITableViewDataSource_Protocol/Reference/Reference.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSIndexPath_Class/Reference/Reference.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSIndexPath_Class/Reference/Reference.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSIndexPath_Class/Reference/Reference.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSIndexPath_Class/Reference/Reference.html
http://tinyurl.com/6ho62t6
http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSMutableDictionary_Class/Reference/Reference.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSMutableDictionary_Class/Reference/Reference.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSMutableDictionary_Class/Reference/Reference.html
http://tinyurl.com/y98kz9s
http://tinyurl.com/y98kz9s
http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSMutableArray_Class/Reference/Reference.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSMutableArray_Class/Reference/Reference.html
http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSMutableArray_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UIScrollView_Class/Reference/UIScrollView.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UIScrollView_Class/Reference/UIScrollView.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UIScrollView_Class/Reference/UIScrollView.html
http://ihackmyi.com/forum/index.php?topic=24020.0
http://ihackmyi.com/forum/index.php?topic=24020.0

	Introduction
	iOS
	Cocoa Touch and UIKit
	Lower Layers

	Getting Started
	Join the Apple Developer Connection
	Xcode and the iOS SDK
	Start a New Project

	Creating an Application
	Create a New View Using Interface Builder

	Adding Your Content
	Property Declaration and Accessor Methods
	Atomic Access

	Memory Management
	Retain
	Release
	Autorelease Pools

	Linking IBOutlets to Objects Laid Out With IB
	Application Structure
	Model-View-Controller Paradigm

	Displaying The Data
	WeatherTableViewController

	NOAA's XML Data
	TouchXML
	WeatherData

	Scroll Views
	Tiling Content For Scroll Views
	Memory Management: viewDidUnload

	Building the Application
	Installing and Running on the iPhone Simulator
	Installing on an iOS Device
	Installing an Application on a Jailbroken iOS Device
	Jailbreaking Your Device
	Installing an Application on a Rooted Device

	Final Thoughts
	Resources

